Are Toe Crunches just as important as Stomach Crunches??

Intrinsic Marbles

 

I have struggled over the years as to the importance of including toe flexor strengthening as part of a program for plantar fasciitis. Many researches agree that the potential causes of plantar fasciitis are just too numerous and multi-factorial. The evidence in the literature has not been conclusive and I have let many of my patient’s comments that “this is silly” when picking up marbles dictate my decision-making. I have slowly but surely, and I believe wrongly, eliminated this important exercise from my treatment approach. I have recently read several articles that have rekindled my enthusiasm for toe flexor strengthening. So why the change in heart??

I am always looking for ways to get our patients better…faster. I have written a book on plantar fasciitis called the Plantar Fasciitis Treatment Manual and it identifies ankle muscle weakness as a result of plantar fasciitis but not include the presence of toe flexor weakness. That is my oversight and I will correct that in the book. Yes, the literature does identify weakness of the ankle muscles and the toes flexor muscles with the plantar fasciits population, yet the research does NOT confirm any causative factor of this weakness on the development of plantar fasciitis.(1,3,4) It is the chicken or the egg conundrum. Unfortunately, there are theoretical assertions that the “flexor digitorum brevis muscle (the muscle directly underneath the plantar fascia) plays an important role in distributing pressure away from the plantar fascia” that are simply not supported by research. (2) Does this mean that we should not perform strengthening exercises? Let me provide some more evidence.

As we get older, we get weaker. We all lose muscle mass, we lose muscle fibers and, as a consequence, we see decreases in strength between the ages of 30 and 80 within a range of 20-40%.(5) Several articles have also shown that “older people” exhibit 24-40% less strength in the muscles of the foot and ankle(5,6,7,8). As a consequence of foot and ankle weakness, older adults are more susceptible to loss of balance, the development of foot and toe deformities and can be susceptible to overuse syndromes such as plantar fasciitis. (5,6,7,8) The biggest question that has not been answered when it comes to strengthening exercises for older adults is WHICH exercises are the most effective?

As a result, we have to rely on some common sense. If the muscles in our ankles and feet get weaker as we get older (proven!), then we should strengthen them to avoid plantar fasciitis. Right? Not necessarily. There is not a direct correlation between weakness and the development of plantar fasciitis but, then again, many people don’t believe that there is a direct correlation between human activity and climate change. My point is why should we wait to change our approach until it is conclusive – whether it be climate change or your plantar fasciitis?

 

  1. http://www.ncbi.nlm.nih.gov/pubmed/12968860
  2. http://running.competitor.com/2014/06/photos/new-techniques-treating-plantar-fasciitis_96398
  3. http://www.jospt.org/doi/pdfplus/10.2519/jospt.2003.33.8.468
  4. http://www.ncbi.nlm.nih.gov/pubmed/1672577
  5. https://www.karger.com/Article/FullText/368357
  6. http://biomedgerontology.oxfordjournals.org/content/61/8/866.full
  7. http://www.jfootankleres.com/content/7/1/32
  8. http://www.jfootankleres.com/content/7/1/28

Foot Orthotic Videos – What do YOU need?

I have created several videos to demonstrate HOW and WHY we make custom foot orthotics at WalkWell Foot Orthotics to treat various foot pain conditions. You can share the links to these videos with friends or family members who may be suffering from foot pain and who are looking for answers. The conditions I cover are:

1. Plantar Fasciitis

2. Metatarsalgia ( ball of foot pain )

3. Supinated or High Arch Foot

4. Specialized Foot Orthotics

5. Sesamoidits ( pain under big toe )

6. Posterior Tibialis Dysfunction ( pain on inside of ankle )

7. Hallux rigidus / Hallux Limitus ( Big Toe Pain )

PLANTAR FASCIITIS….OUR OWN DVD!!

I have treated a lot of foot pain over 22 years as a physical therapist. Because I make custom foot orthotics, I am exposed to foot ailments much more than other PT’s. Geoff and I treat a lot of these problems in the clinic every day. One of my patients even went so far as to nickname us the “foot whisperers” and another patient coined OrthoWell as the “doctors of knotology”.  Can you feel the love? I have spent a lot of time researching the BEST strategies to treat foot pain. This has culminated in the release of my Ebook entitled Physical Therapist Discovers the Truth about Plantar Fasciitis as well as my self-help DVD on the treatment of Foot Pain & Plantar Fasciitis. Both of these are now available and are on my HOMEPAGE.

 

3D ebook cover

The Ebook includes a complete review of the literature on the treatment of plantar fasciitis as well as a description of the the most effective treatment strategies. This book is not a re-tellling of on-line information about plantar fasciitis. It is the missing link! You can read more by clicking HERE.

 

small

The DVD is a collection of videos that will “take you by the hand” and teach you specific methods and exercises to resolve your foot pain. It is designed for those people suffering from foot pain who cannot come to see us or who have not responded to other practitioners. It is a great way for our SUCCESS STORY patients to help friends and family members who have foot pain but cannot come to see us directly. You can read more HEREWatch the intro video below. Talk to you soon!!

 

 

 

Plantar Fasciitis & Foot Orthotics

Yes. We treat a lot of plantar fasciitis. There is a lot of foot pain out there. While performing a literature review of heel pain in 2005 (follow this link to READ MORE), I made reference to several articles about the prevalence of heel pain. One United States study estimated that one million patient visits each year are for the diagnosis and treatment of plantar heel pain. This disorder appears in the sedentary and geriatric population, it makes up one quarter of all foot injuries in runners, and is the reason for 8% of all injuries to people participating in sports. As many of you know, all that we do regarding foot orthotic fabrication and physical therapy is with good, evidence-based reason. I fabricate custom foot orthotics based on sound biomechanical principles and evidence-based research. Patients are always asking me “so how will foot orthotics help my plantar fasciitis?” Here is the answer! I have included both a clinical description as well as a more basic description in the video. This will allow you to refer your doctor and/or PT as well as a relative who may ask WHY or HOW we made your foot orthotics. I have included references for several articles that have had a profound influence on my treatment and fabrication philosophy regarding plantar fasciitis.  I would like to share my insights with you.

It has been my experience that positive results can be achieved much more quickly for cases of plantar fasciitis using the combination of softer materials to cushion the foot in combination with stiffer, denser materials to redistribute pressures on the foot. My direct molding techniques produce a total contact orthotic which reduces weight bearing pressure on both the heel and forefoot.  These findings for total contact orthoses have been confirmed by both Mueller et al10,11 and Ki et al12. As you can see from my samples on the video, I utilize softer materials as a top layer with the addition of a heel pad on the bottom.  I reinforce the arch in order to redistribute pressures up against the talonavicular joint (or midfoot).  I utilize a forefoot valgus post (higher on the outside of the forefoot) with a slight reverse Morton extension (ledge under toes 2-5) in order to plantar flex the first ray (big toe lower than the other four toes) and unload both the fascia and 1st MTP joint (big toe joint)  As I tell my patients, the foot orthotic is only as good as the shoe you put around it. Our best results with the over-pronating foot are achieved via the combination of motion control shoes and custom orthoses.

In regards to prefabricated orthotics such as ALine, it is one-shape-fits-all and only utilizes rearfoot posting “to help align the leg from foot to hip” per the website. The concept of rearfoot posting for biomechanical control is a much debated topic in the literature. Forefoot modifications are not an option. It is also a very rigid material against a painful heel.  It has been my experience that prefabs such as ALine or Powerstep are a good option for the younger, athletic patient.

Don’t forget, our custom foot orthotics range in price from $120 to $165. I direct mold, fabricate, educate and issue in one hour!  All adjustments included. Our WalkWell guarantee since 1997!!

Research findings continued……

Research done by Kogler1,2,3 et al has been instrumental in determining the appropriate type of rearfoot and/or forefoot posting for foot orthotics for plantar fasciitis. Kogler showed that rearfoot posting had little effect on plantar fascia strain, forefoot varus posting increased the stress, and forefoot valgus posting actually decreased the strain.  Kogler concluded that foot orthotics which raised the talonavicular joint and prevented dorsiflexion of the first ray were most effective in reducing the strain on the central band of the plantar fascia. I recently made orthotics for a patient who said her doctor issued bilateral heel lifts “to take the stress off of the fascia”.  Kogler actually showed no change in plantar fascia strain using heel lifts.  However, heel lifts have been shown by Trepman et al4 in 2000 to decrease the compressive forces in the tarsal tunnel.  Benno Nigg5, a researcher in Canada, has also published over 200 articles on biomechanics.  He has stated that based on his results, custom foot orthotics, on average, control only 2-3 degrees of motion.  This would be his kinematic results, however, he has done a lot of enlightening research on the kinetic effects of foot orthotics. A little bedtime reading for you!

Paul Scherer6,7,DPM has published several articles on the effects of custom orthotics on the 1st MTP joint. The concept of maintaining the first ray in a plantar flexed position unloads both the 1st MTP joint as well as the plantar fascia. Howard Dananberg8,DPM has also written several articles on this topic. Doug Richie9,DPM has been a great resource for the evidence behind the treatment of plantar fasciitis as well as posterior tibialis dysfunction.  You may have heard of the Richie brace.  Dr Richie states that the “most effective foot orthotic for plantar fasciitis is one that hugs against the navicular and flares away from (or plantar flexes) the first ray.”

1.Kogler, G. F.; Solomonidis, S. E.; and Paul, J. P.: Biomechanics of longitudinal arch support mechanisms in foot orthoses and their effect on plantar aponeurosis strain. Clin. Biomech., 11: 243-252, 1996.

2.Kogler GF, Veer FB, Solomonidis SE, et al. The influence of medial and lateral placement of   wedges on loading the plantar aponeurosis, An in vitro study. J Bone and Joint Surg Am. 81:1403-1413, 1999

3.Kogler GF, Veer FB, Verhulst SJ, Solomonidis SE, Paul JP.

The effect of heel elevation on strain within the plantar aponeurosis: in vitro study.

Foot Ankle Int. 2001 May;22(5):433-9.

4.Trepman E, Kadel NJ: Effect of foot and ankle position on tarsal tunnel compartment pressure. Foot Ankle Int 20(11):721, 2000

5.Nigg, B. Biomechanics of Sport Shoes. 2011

6.Scherer PR, Sanders J, Eldredge, DE, et al. Effect of functional foot orthoses on first metatarsophalangeal joint dorsiflexion in stance and gait. J Am Podiatr Med Assoc 2006;96(6):474-481.

7.Scherer,P. Recent Advances in Orthotic Therapy. 2011

8.Dananberg HJ. Functional hallux limitus and its relationship to gait efficiency. J Am Podiatr Med Assoc. 1986; 76(11):648-52

9.Richie,D. Offloading the plantar fascia: What you should know. Podiatry Today, Vol 18. Issue 11, Nov 2005.

10.Mueller MJ, Hastings M, Commean PK, et al. Forefoot structural predictors of plantar pressures during walking in people with diabetes and peripheral neuropathy. J Biomech 2003;36(7):1009-1017.

11.Mueller MJ, Lott DJ, Hastings MK, et al. Efficacy and mechanism of orthotic devices to unload metatarsal heads in people with diabetes and a history of plantar ulcers. Phys Ther 2006;86(6):833-842.

12.Ki SW, Leung AK, Li AN. Comparison of plantar pressure distribution patterns between foot orthoses provided by the CAD-CAM and foam impression methods. Prosthet Orthot Int 2008;32(3):356-362.

Nerve Mobilization Techniques

I would like to highlight one of the unique treatment techniques that we offer at OrthoWell.  As many of you know, we spend a lot of quality time during our biomechanical evaluation trying to “figure things out”. This is the reason that several of our referring physicians call us “THINKERS”.  We pride ourselves in determining your functional diagnosis. This diagnosis is what we use to develop your plan of care and to educate you in how to alleviate your pain or dysfunction. Many of our patients have seen several physicians or therapists before hearing about us. For this reason, we offer specialized evaluation and treatment services that our patients may not have heard of and that may be appropriate to alleviate symptoms that have been unresponsive to prior interventions.  One of these is Nerve Mobilization or NeuroMobilization. So what is it?

What is NeuroMobilization?

NeuroMobilization or Nerve Mobilization is a technique that we utilize to treat nerves that may be adhered, irritated, or compressed.  Many patients that have been unresponsive to other physical therapy and present with a chronic history of referred symptoms like pain, numbness, or tingling into the arms or legs may respond to NeuroMobilization.  Every patient that presents with referred symptoms or pain that has been unresponsive to localized treatment receives a complete neural tension evaluation.  Neural tension testing is a way for your therapist to determine the extent of nerve involvement.  By mobilizing a nerve, we can determine, in combination with manual traction and sensitizing maneuvers, whether your pain is originating from the spine or the periphery.

NeuroMobilization Techniques

We can then perform NeuroMobilization techniques utilizing controlled neural tension maneuvers to mobilize the nerve up and down.  David Butler,PT, has been at the forefront of these techniques for over 20 years.  Although we still do not completely understand the exact mechanism, he proposes that NeuroMobilization (what David Butler calls Neurodynamics) can accelerate nerve healing and quiet down what he calls an “altered impulse generating system (AIGs)”.  These AIGs may respond to the oscillations of NeuroMobilization by enhancing circulatory exchange or ion transfer in and around the nerve.  You can read more about the techniques and science in David Butler’s book The Sensitive Nervous System.

Here is a video that highlights a sciatic nerve tension test and Neuromobilization.

 

What Happened To My Arch??

I cannot count the number of times over the past 22 years that patients have told me “I USED to have an arch, but not anymore”.  Is it true that you can actually lose your arch as you get older?  The answer: YES.  So what happens?  Many doctors attribute a loss of your medial arch height to a condition labled posterior tibialis tendon dysfunction or PTTD. Your posterior tibialis muscle lies deep under your calf and it’s tendon inserts into your midfoot.  It is responsible for turning your ankle inwards and “reinforcing your arch height.”

PTTD typically presents as a progressive increase in tendonitis pain which can lead to partial or complete rupture. The loss of PTT integrity has been hypothesized to produce a gradual change in the alignment of your foot. However, recent evidence shows that a partially torn or ruptured PTT is NOT the definitive reason for an adult acquired flatfoot.  Let me show you. A study by Yeap et al   followed 17 patients who underwent a surgical transfer of the PTT to a different part of the midfoot in order to control a drop foot. At a 5 year follow-up, none of the patients had a clinical flatfoot deformity. In other words, “losing” the PTT tendon by attaching it to a different part of the foot did NOT cause a flat foot.  In light of this one study, there is sufficient evidence to rebuke the PTT as the sole reason for an adult acquired flatfoot.

Another study by Deland et al   attempted to produce an adult acquired flatfoot in cadaver models by cutting the PTT. This produced only a minimal drop in height. It wasn’t until they severed the ligaments and plantar fascia on the underside of the arch that a complete arch collapse was achieved. Researchers Chu and Myerson confirmed the results of this study as well. So the evidence is here. A major contributing factor to the loss of arch height as we age is the loss of ligamentous integrity in the foot.

Did you know that women are 3 times more likely to be diagnosed with PTTD? It is most frequently found in women in their 50’s.  Although a definitive hormonal link has not been established, PTTD appears to peak during the perimenopausal period. An interesting study performed at USC in 2011  found that women with PTTD compared with a control group had significantly decreased endurance and strength of hip muscles. Strengthening your hips may help to strengthen your arch. More evidence that everything is connected!

Can you raise your arch by strengthening the muscles in your feet? Did you know that there are 18 muscles in the arch of your foot? What does the research tell us? In my previous article on running technique, I mentioned an article by Robbins who showed radiographic changes in arch height after runners ditched their shoes and started walking and/or running barefoot. This should be a very slow process, but many coaches and therapists advise walking barefoot on grass or sand as a starting point. Two other studies by Fiolkowski et al  and Headlee et al also show that when muscles in the arch weaken, the arch falls.

So what, specifically, can you do about your fallen arches?

Number 1 :  Custom Foot Orthotics. You need to control the pain and unload the injured structures first. We are attempting to control some of the mechanical imbalances by fabricating foot orthotics that “hug” your midfoot. We utilize both rearfoot and forefoot posting (angling of the orthotic) in combination with motion control shoes to control your excessive motion.  For more severe cases, some research shows better control of the twisting or internal rotation of the leg using braces such as ankle-foot orthoses.  The Richie Brace is one example.

Number 2:  Exercise!! Yes, it is very important. The articles above prove it. In order to “raise” your arch height with exercise, you need to be very consistent and compliant with your program.  I have mentioned HOW to exercise in a previous post. I want to emphasize that, if you have flat feet, your arches will fall every time you stand or take a step if you don’t train yourself to prevent it. This means using the appropriate intrinsic muscles in your arch in combination with active joint repositioning. If you can master this, you will be in a constant state of muscle retraining and joint stabilizing while bearing weight on your feet.

You could then add barefoot walking on grass or sand as an adjunct to your program. My next post will highlight the research on the muscle training effects of minimalist shoes such as the Nike Free.  Stay Tuned! Now, check out my videos on foot intrinsic training and an effective hip strengthening exercise called Clams.

PUMP YOU UP!!

So how important is resistance training? I have had the privilege of working with one of my peers, a fellow PT, and strength and conditioning specialist, Mike Stare from Spectrum Fitness in Beverly, both professionally as well as personally. Mike helped to redirect MY fitness program while I was recovering from my knee injuries 1.5 years ago. Mike is on top of his game from a fitness training standpoint. He has devoted a lot of time and resources in developing an evidence-based approach to fitness and weight loss in ALL age groups. You can see this for yourself at his website. It is important for clients in a fitness program as well as our patients in physical therapy at OrthoWell to understand HOW to strengthen muscles.

The physiological principle of “overload” is what makes the difference between strength gains and stagnation. Resistance training is hard work! I tell my patients “If it’s easy, then you’re doing something wrong!” Is it true that people will lose 5-10% of muscle strength in every decade of life after the age of 40? Studies have shown that people can retain 100% of their muscle mass and strength from age 40 through their 80s with exercise! (Wrobelski, A. et al. The Phys and Sports Med, Sept 2011) You can read more on the Anti-Aging movement at Mike’s BLOG as well.

However, during exercise, you need to challenge your muscles physiologically. You need to provide a “load” that goes “over” your muscles comfort zone. In order for a muscle (including the heart) to increase strength, it must be gradually stressed by working against a load greater than it is used to. So how do you do this? There are many books and magazines such as Muscle Fitness that advocate all kinds of strategies for maximizing strength and muscle mass. Strength gains can be accomplished by performing a one-repetition maximum as well as via the typical 10 rep set approach. My approach, with the fine-tuning of Mike, is to instruct my patients in 2-3 sets of 8-12 repetitions per exercise. The most important factors to consider are the utilization of proper technique in order to isolate the specific muscle as well as to use the idea of the “loss of technical form” as your maximum output point. By the time you reach the 8-12th rep you should be tiring and on the verge of a loss of technical form. You should not work to fatigue as this will compromise your technique and become a safety concern. Regarding the frequency of strengthening exercise, studies show that strength gains are maximized at a frequency of 2-3x per week. The American College of Sport Medicine (ACSM) recommends working out a MINIMUM of 2x per week at an intensity that is equal to 70-85 percent of your one rep maximum (maximum weight you can use for one rep) for 8-10 reps and 1-3 sets. A program that comprises repetitions over 12 is considered endurance training. For cardiovascular benefits, the ASCM recommends exercising for a frequency of 3-5 times per week, at an intensity equal to 60-85 percent of your maximum heart rate for a time of 20-60 minutes. Research has shown that you’ll get the same beneficial results by exercising at 50-60% of your maximum heart rate that you would get exercising at an intensity 80% of your maximum heart rate.

At OrthoWell, as part of your physical therapy, we get you started on a strengthening program that targets your problem area. Finding the right practitioner to design a complete, individualized fitness program can be a very rewarding thing and Spectrum Fitness is definitely one of our choices. As Mike points out, “If there is one thing to do to improve the quality of life as we age, strength training would be it.”

For our athletes and runners, don’t forget that strength training has been PROVEN to enhance athletic performance. Read the following to get the facts!

-A University of Alabama meta-analysis of the endurance training scientific literature revealed that 10 weeks of resistance training in trained distance runners improves running economy by 8-10%.  For the mathematicians in the crowd, that’s about 20-24 minutes off a four-hour marathon – and likely more if you’re not a well-trained endurance athlete in the first place.

-French researchers found that the addition of two weight-training sessions per week for 14 weeks significantly increased maximal strength and running economy while maintaining peak power in triathletes.  Meanwhile, the control group – which only did endurance training – gained no maximal strength or running economy, and their peak power actually decreased (who do you think would win that all-out sprint at the finish line?).  And, interestingly, the combined endurance with resistance training group saw greater increases in VO2max over the course of the intervention.

-Scientists at the Research Institute for Olympic Sports at the University of Jyvaskyla in Finland found that replacing 32% of regular endurance training volume with explosive resistance training for nine weeks improved 5km times, running economy, VO2max, maximal 20m speed, and performance on a 5-jump test.  With the exception of VO2max, none of these measures improved in the control group that just did endurance training.  How do you think they felt knowing that a good 1/3 of their entire training volume was largely unnecessary, and would have been better spent on other initiatives?

-University of Illinois researchers found that addition of three resistance training sessions for ten weeks improved short-term endurance performance by 11% and 13% during cycling and running, respectively.  Additionally, the researchers noted that “long-term cycling to exhaustion at 80% VO2max increased from 71 to 85 min after the addition of strength training”

Foam Rolling Technique

As most of you know, a very important part of our practice is the treatment of soft tissue dysfunction. This may be in the form of a muscle “knot”, chronic scar tissue, or post-surgical stiffness. We have many names ie “the doctors of knotology” and “the Marquis de Sade” to name a few. In spite of the many terms of endearment, at OrthoWell, we get our patients better- Faster! because of our approach. A very important part of your recovery has to do with your home program. Every conditioning program should include stretching, strengthening, cardio, and a close fourth should be self-massage and/or self-mobilization. Many of you have experienced “the twins” (my double tennis ball massager) as well as the foam roller. It is important to address your chronic “knots”, scar tissue, and muscle sensitivities in order to promote optimal tissue dynamics and to prevent future pain syndromes related to poor tissue dynamics.

The following video highlights our foam rolling strategy for your lower extremities. Each muscle group should receive 5-10 passes along the foam roll. The amount of weight you impart upon the roll will be dictated by your tolerance. Yes, this should hurt! Only mild to moderate pain, nothing severe. Use your arms and opposite leg to control the pressure being applied. Try to identify key areas along the way that may need additional passes. Yes, over time, the pain will subside and your pressure will increase. Consistency is the key. Ideally, stretching and self-massage should happen daily. Here is a run down of what is happening in the video.

1. In the first part of the video, I am treating the quadriceps. Longer muscles need more attention. Perform 5-10 passes each at the upper end, middle, and lower end of the muscle.

2. Turn 45 degrees and perform the same treatment at the junction between the quadriceps and iliotibial band(ITB). Pay close attention to the lower end near your patella.

3. Turn another 45 degrees and, in the same manner, treat directly along all three aspects of the ITB.

4. Next, turn over and treat your upper glute area. Cross one leg over the other as shown. The leg that is crossed is the side you are treating. Perform 5-10 passes.

5. Move down to the hamstrings and treat the upper, mid, and lower ends. Place your opposite leg on top of the treatment leg in order to impart more pressure.

6. Next, treat the calf muscle. Place the opposite leg on top for more pressure. Treat the entire length of the calf. You can also perform an up/down ankle movement in order to help glide the stiff tissue while imparting pressure onto the roll.

7. Finally, treat the inner thigh or adductor muscle group. It may be easier to use the 6” roll to treat this area effectively. You can purchase a white 6” roll which is the same material as the 4” or you may purchase the black roll which is firmer than the white.

Keep on rollin’

 

 

KinesioTape-The Evidence

I have received several comments from bloggers that “there is no evidence” regarding the effectiveness of Kinesiology Taping or KinesioTaping Techniques. I would like to share with you some very detailed clinical study outcomes that are present, and copied here, from the SpiderTech website. This post is definitely more clinical in nature, but it can certainly help any interested patient or practitioner in understanding the evidence behind the WHY and HOW of KinesioTaping.

The Clinically Proven Effectiveness of Kinesiology Taping

Taping is widely used in the field of rehabilitation as both a means of treatment and prevention of sports-related injuries. The essential function of most tape is to provide support during movement. Some believe that tape serves to enhance proprioception and, therefore, to reduce the occurrence of injuries. The most commonly used tape applications are done with non-stretch tape. The rationale is to provide protection and support to a joint or a muscle. Utilizing existing stretch tape, investigators have shown clinical improvement in patients with grade III acromioclavicular separations, anterior shoulder impingement, and hemiplegic shoulders. In recent years, kinesiology tape has become increasingly popular as a therapeutic treatment option in North America and Europe. Kinesiology tape was developed in the 1970’s and was engineered to mimic the qualities of human skin. It has roughly the same thickness as the epidermis and can be stretched between 130% and 140% of its resting length longitudinally. The application techniques were developed through the use of applied kinesiology taping, which
logically gave the therapy and material its name. The tape reportedly has several benefits, depending on the amount of stretch applied to the tape during application: (1) to provide a positional stimulus through the skin, (2) to align fascial tissues, (3) to create more space by lifting fascia and soft tissue above the area of pain/inflammation, (4) to provide sensory stimulation to assist or limit motion, and (5) to assist in the removal of edema by directing exudates toward a lymph duct. The clinical information on kinesiology tape suggests improved function, pain, stability, and proprioception in pediatrics and patients with acute patellar dislocation, stroke, ankle and shoulder pain, and trunk dysfunction. The respective information comes from case series and pilot studies, the most important of which are summarized in the following:

In a prospective, randomized, double-blinded, clinical trial using a repeated-measures design Thelen et al. investigated the clinical efficacy of kinesiology tape for shoulder pain. Forty-two subjects clinically diagnosed with rotator cuff tendonitis/impingement were randomly assigned to 1 of 2 groups: A therapeutic kinesiology tape group or a sham kinesiology tape group. The therapeutic kinesiology tape group showed immediate improvement in pain-free should abduction after tape application. It was concluded that kinesiology tape may be of some assistance to clinicians in improving pain-free active range of motion immediately after tape application for patients with shoulder pain.

In 2009, Fraizer et al. examined in a case series the clinical outcomes for patients with shoulder disorders who were treated with a comprehensive physical therapy program that included kinesiology taping techniques. Five patients
were treated with this taping method among other interventions. All patients demonstrated clinically important improvements in function. The authors concluded that kinesiology taping should be considered as an optional clinical
adjunct in the treatment of shoulder pain as part of a comprehensive physical therapy regimen.

Also in 2007, Yoshida et al. studied the effect of kinesiology tape on lower trunk range of motions. Thirty healthy subjects with no history of lower trunk or back issues participated in the study. Based on their findings, the authors determined that the application of kinesiology tape applied over the lower trunk may increase active lower trunk flexion range of motion.

In 2007, Lie et al. studied the application of kinesiology tape in patients with lateral epicondylitis. The experimental results indicated that wearing kinesiology tape causes the motions of muscle on the ultrasonic images to be enhanced which the authors believe to indicate that the performance of muscle motion was improved.

The effect of taping using kinesiology tape in an acute pediatric rehabilitation setting was investigated in a 2006 pilot study by Yasukawa et al. The purpose of this pilot study was to describe the use of the kinesiology tape for the upper extremity in enhancing functional motor skills in children admitted into an acute rehabilitation program. Fifteen children (4 to 16 years of age), who were receiving rehabilitation services participated in this study. The improvement from pre- to post-taping was statistically significant. These results suggest that kinesiology tape may be associated with improvements in upper-extremity motor control and function in the acute pediatric rehabilitation setting. The authors concluded that the use of kinesiology tape as an adjunct to treatment may assist with the goal-focused occupational therapy treatment during the child’s inpatient stay.

In 2009, Tsai et al. evaluated the effects of a bandage replacement by kinesiology tape in decongestive lymphatic therapy (DLT) for breast-cancer-related lymphoedema. Forty-one patients with unilateral breast-cancer-related lymphoedema for at least 3 months were included in this study. The study results suggested that kinesiology tape could replace the bandage in DLT, and it could be an alternative choice for the breast-cancer-related lymphoedema patient with poor short-stretch bandage compliance after 1-month intervention.

As published in the journal Top Stroke Rehab., Jaraczewska et al. indicated that kinesiology tape could improve the upper extremity function in the adult with hemiplegia. The article discusses various therapeutic methods used in the treatment of stroke patients to achieve a functional upper extremity. The only taping technique for various upper extremity conditions that had previously been described in the literature is the athletic taping technique. The authors concluded that kinesiology taping in conjunction with other therapeutic interventions could facilitate or inhibit muscle function, support joint structure, reduce pain, and provide proprioceptive feedback to achieve and maintain preferred body alignment. Restoring trunk and scapula alignment after the stroke is critical in developing an effective treatment program for the upper extremity in hemiplegia.

The clinical efficacy of kinesiology taping in reducing edema of the lower limbs in patients treated with the Ilizarov method was investigated by Bialoszewski et al. The study involved 24 patients of both sexes subjected to lower limb lengthening using the Ilizarov method who had developed edema of the thigh or leg of the lengthened extremity. The mean age of the patients was 21 years. The patients were randomized into two groups of twelve, which were then subjected to 10 days of standard physiotherapy. The study group was additionally treated with kinesiology taping (lymphatic application), while the control group received standard lymphatic drainage. The application of kinesiology taping in the study group produced a decrease in the circumference of the thigh and leg statistically more significant than that following lymphatic drainage. It was concluded that kinesiology taping significantly reduced lower limb edema in patients treated by the Ilizarov method and that the application of kinesiology taping produced a significantly faster re-education of the edema compared to standard lymphatic massage.

Hsu et al investigated the effect of elastic taping on kinematics, muscle activity and strength of the scapular region in baseball players with shoulder impingement. Seventeen baseball players with shoulder impingement were recruited from three amateur baseball teams. All subjects were taped with both the kinesiology tape and a placebo tape over the lower trapezius muscle. The kinesiology tape resulted in positive changes in scapular motion and muscle performance. The results supported its use as a treatment aid in managing shoulder impingement problems.

Reebok pays 25M – Kick in the Butt!

As an addendum to the my last post “Whats Up with the Shape-Ups?”, guess what happened to Reebok? They have to pay 25 million due to false “toning” claims. Talk about a kick in the butt!! Read on.

PORTLAND, Ore. — Reebok will need to tone down advertising for its shoes that claim to reshape your backside.

The athletic shoe and clothing company will pay $25 million in customer refunds to settle charges by the Federal Trade Commission that it falsely advertised that its “toning” shoes could measurably strengthen the muscles in the legs, thighs and buttocks. As part of the settlement, Reebok also is barred from making some of these claims without scientific evidence.

“Settling does not mean we agree with the FTC’s allegations,” Dan Sarro, a Reebok spokesman, said in a statement Wednesday. “We do not. We have received overwhelmingly enthusiastic feedback from thousands of EasyTone customers.”

It’s the latest controversy surrounding so-called toning shoes, which are designed with a rounded or otherwise unstable sole. Shoemakers say the shoes force wearers to use more muscle to maintain balance and consumers clamored for them, turning toning shoes into a $1.1 billion market in just a few years. Companies such as Reebok, New Balance and Skechers have faced lawsuits over their advertising claims. But the FTC settlement, announced Wednesday, is the first time the government has stepped in.

Reebok International Ltd. makes a range of toning products, including its RunTone running shoes, EasyTone walking shoes and flip flops and some clothing. The company, which is owned by Adidas AG, said that its toning shoes were one of its most popular product launches ever when they debuted in 2009. The company marketed them heavily with ads featuring women in short shorts and with shapely bottoms; one ad even said the shoes would “make your boobs jealous”.

The FTC took issue with Reebok’s ads that claimed its EasyTone footwear had been proven to lead to 28 percent more strength and tone in the buttock muscles and 11 percent more strength and tone in hamstring and calf muscles than regular walking shoes. The FTC said it could not disclose if it was pursuing similar actions against other shoe makers.

“We think this is a real victory for consumers,” said Dana Barragate, an FTC attorney involved in the case. “We hope it sends a message to businesses that if they are going to make claims they must be justified.”

Shoe makers, including Reebok, have funded studies and say they have anecdotal evidence that proves they are effective. Several experts have questioned their validity and the American Council on Exercise, a nonprofit fitness organization, conducted a study that found toning shoes failed to live up to the claims of shoe makers. However, the council said the shoes could be beneficial to one’s health if they motivate people to get moving.

Christopher Svezia, with the Susquehanna Financial Group, said many shoemakers have changed their advertising approach as criticism has mounted. “The emphasis has moved to fitness instead of making these kinds of claims and promises,” he said. “The question is who is next and how much is it going to cost them.”

The industry has faced other issues. There have been some injuries reported by wearers who have found themselves with shin splints, twisted ankles and sore muscles from the new gear and motions. Shoe makers suggest new wearers ease into wearing them.

Toning shoes were once the fastest-growing segment in the footwear industry, but recently lost some ground. SportsOne Source Group said that the $1.1 billion market of 2010 is expected to fall about 40 percent to $650 million in 2011 after Skechers flooded the market with products, forcing prices down. However, SportsOne Source said the number of shoes sold is only expected to fall 5 percent, suggesting there is still fairly strong demand.

Rebecca Sayre of Seattle, who bought a pair of Skechers more than a year ago, said they made her legs stronger and posture better. But, she says: “They’ve lost their luster.”

(Copyright 2011 by The Associated Press. All Rights Reserved.)

Story posted 2011.09.28 at 08:41 PM EDT